Parallel iterated method based on multistep Runge-Kutta of Radau type for stiff problems

نویسندگان

  • Kevin Burrage
  • H. Suhartanto
چکیده

Research on parallel iterated methods based on Runge-Kutta formulas both for stii and non-stii problems has been pioneered by van der Houwen et al., for example see 8, 9, 10, 11]. Burrage and Suhartanto have adopted their ideas and generalized their work to methods based on Multistep Runge-Kutta of Radau type 2] for non-stii problems. In this paper we discuss our methods for stii problems and study their performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel iterated methods based on multistep Runge-Kutta methods of Radau type

This paper investigates iterated Multistep Runge-Kutta methods of Radau type as a class of explicit methods suitable for parallel implementation. Using the idea of van der Houwen and Sommeijer 18], the method is designed in such a way that the right-hand side evaluations can be computed in parallel. We use stepsize control and variable order based on iterated approximation of the solution. A co...

متن کامل

Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects

In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...

متن کامل

Block Runge-Kutta Methods for the Numerical Integration of Initial Value Problems in Ordinary Differential Equations

Block Runge-Kutta formulae suitable for the approximate numerical integration of initial value problems for first order systems of ordinary differential equations are derived. Considered in detail are the problems of varying both order and stepsize automatically. This leads to a class of variable order block explicit Runge-Kutta formulae for the integration of nonstiff problems and a class of v...

متن کامل

Convergence results for multistep Runge - Kuttamethods

Recently Ch. Lubich proved convergence results for Runge-Kutta methods applied to stii mechanical systems. The present paper discusses the new ideas necessary to extend these results to general linear methods, in particular BDF and multistep Runge-Kutta methods. Stii mechanical systems arise in the modelling of mechanical systems containing strong springs and (or) elastic joints. A typical exam...

متن کامل

Order Stars and Stii Integrators

Order stars, introduced in 25], have become a fundamental tool for the understanding of order and stability properties of numerical methods for stii diierential equations. This survey retraces their discovery and their principal achievements. We also sketch some later extensions and describe some recent developments. Stii diierential equations rst became popular mainly during the fties; for an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1997